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Summary

2,3-Dimethylidenebicyclo[2.1.1]hexane (4) was isolated from direct irradiation
(253.7 nm) of 5,6-dimethylidene-2-norbornanone (3). Quenching experiments at
253.7 nm, as well as direct and sensitized irradiations at > 300 nm suggested that
a high vibrationally excited S- or a S,-state is required for the photodecarbonyla-
tion of 3 in contrast with other f,y-unsaturated ketones for which a-cleavage
occurs with lower excitation-energy. The new diene 4 reacted toward tetracyano-
cthylene (k¥hs5- (Imol™!'s™1)=(3.1£0.34)- 1073 in toluene and (6.240.11)- 1073
in benzene) only 60 times more slowly than 2,3-dimethylidenenorbornane (5) and
ca. 850 times as fast as 2,3-dimethylidene-syn-1,4,5,6-tetramethylbicyclo[2.1.1]-
hexane (9).

Introduction. - The photochemistry of f,y-unsaturated carbonyl compounds
has been studied widely [2-5]. Three types of reactions can be observed: (1) the
carbonyl reactions (a-cleavage (Norrish I), y-hydrogen transfer (Norrish II), reduc-
tion, ketene elimination, etc.), (2) the olefin reactions (cycloadditions, cyclizations,
cis-trans isomerizations, reduction, etc.) and (3) the bichromophoric reactions
(1,2- and 1,3-acyl shifts, intramolecular oxetane formation, ezc.). The photo-
reactions of f,y,d,¢-unsaturated ketones in which the carbonyl function looks
at the ‘front’ of the diene, as depicted in 1, have been illustrated abundantly [2] [6].
The photochemistry of bichromophoric systems [7] in which an homoconjugated
carbonyl group looks at the ‘back’ of a diene, as depicted in 2, has received little
attention’®). The 5, 6-dimethylidene-2-norbornanone (3) [9] is one example of such
a system. We report here an exploratory study on its photochemistry.

1 ‘front 2 ‘back’

) Interactions between non-conjugated chromophores, Part 12; Part 11, see [1].

2y  Author, to whom correspondence should be addressed.

3)  The photolysis (4> 300 nm) of 2,3-dimethylidene-7-norbornanone yields CO and the 2,3-dimeth-
ylidene-1,4-cyclohexanediyl diradical [8].
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Photolysis of 5,6-dimethylidene-2-norbornanone. - Contrary to 2, 3-dimethylid-
ene-7-norbornanone [8] and to other 4,y- and f,v,0,¢-unsaturated ketones [2] [6],
the keto-diene 3 is little photoreactive. Under direct irradiation at A> 300 nm
(pyrex, high-pressure Hg lamp, — 50 to +30°) only slow polymerization of 3 was
observed (quantum yield<0.02) in pentane, acetone or methanol. Addition of
triplet sensitizers such as acetophenone or xanthone [10] did not affect the out-
come of the photolysis. Irradiation at 253.7 nm (low-pressure Hg lamp, quartz) in
pentane, ether, methanol, toluene or acetone yielded the 2,3-dimethylidenebicyclo-
[2.1.1]hexane (4) and untractable polymers. The photo-decarbonylation 3—4 was
not quenched with O,, cis-1,3-pentadiene, 9, 10-benzophenanthrene or azulene,
thus suggesting a singlet reactive state S,- or a vibrationally excited S-state.

p X0 ?B

3 4

Cyclohepta-3, 5-dienones are known to undergo a-cleavage under A;,> 300 nm,
probably via a S, (n,n*)-state [6]. In 3, the S,(n,z*)- and T (n, n*)-states do not
lead to any observable decarbonylation. The 2,3-dimethylidenenorbornane (5)
cyclizes to give the cyclobutene 6 upon direct irradiation at 253.7 nm with a
relatively low quantum yield [11]. The analogous cyclobutene 7 could not be
detected upon irradiation of 3 under the above conditions. However, it can not be
excluded that 7 is consumed by fast reopening into 3 (if true, this would imply
that the homoconjugated carbonyl group in 7 activates the electrocyclic ring
opening, cf. [11]) or by a Diels-Alder reaction with 3 or 4 to generate various
adducts. We failed, however, to detect any dimer of 3 or adduct of 7+4 in the
polymeric material that was formed competitively with 4 (i;,=253.7 nm), neither
in the polymer formed under direct or sensitized irradiations at 1> 300 nm. Also
no products of an oxa-di-z-methane rearrangement which has to occur via 8 could
be detected. Control experiments established that the diene 4 was also polymerized
under direct irradiation at 253.7 nm with a quantum yield of 0.10+0.03, not very
different from that of the photodecarbonylation 3—4 (0.30+0.08). A quantum
yield of 0.75 £ 0.08 was measured for the disappearance of 3 at 253.7 nm.

b A b

The structure of 4 was deduced from its spectral data, combustion analysis and
reactivity toward tetracyanoethylene (TCE). A typical UV. absorption spectrum
was observed for the planar s-cis-butadiene moiety [12] with 1,,,,=238.5 nm. This
corresponds to a somewhat higher transition energy than for the diene 5
(Amax=248 nm [13]) and 2,3-dimethylidenebicyclo[2.2.2]octane (A,,,=252 nm
[14]). If the small differences observed are not due to Franck-Condon effects of
the V< N transition, one could attribute them to changes in the 1,4-interactions
between the two ethylenic chromophores [15]. The distance between the two olefinic
CH,-groups is expected to be larger in 4 than in 5 and 2, 3-dimethylidene-bicyclo-
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[2.2.2]octane [16]. Another possible interpretation would be to invoke the different
abilities of puckered cyclobutane [17], cyclopentane [18] and cyclohexane [19]
rings to hyperconjugate with the exocyclic diene in 4, 5§ and 2,3-dimethylidene-
bicyclo{2.2.2]octane, respectively.

The endocyclic double bond in 2-norbornene derivatives exerts in the
BC.NMR. spectrum a remarquable downfield shift effect of 10-17 ppm on the
y-carbon C(7) relative to the corresponding saturated analogs [12a] [20]. This
so-called ‘norbornene effect’ is not observed in acylic, monocyclic hydrocarbons
[21] and in the bicyclo[2.2.2]octane series [22]. A downfield shift effect of ca. 29 ppm
is observed on the d. of the y-carbon atoms C(5,6) by introducing an endocyclic
double bond in bicyclo[2.1.1]Thexane [23]. In contrast, 2-methylidenenorbornane
[24] and 2,3-dimethylidene-norbornane [12a] [25] display a J. for C(7) very
similar to that of norbornane. Similarly, we find that methylidene groups at C(2,3)
of the bicyclo[2.1.1]hexane system don’t affect significantly the 6 of C(5,6).

Diels-Alder reactivity of 2,3-dimethylidene-bicyclo[2.1.1]hexane. - Hogeveen et al.
[26] have shown that the cyclobutane bridged diene 9 has a remarkably low Diels-
Alder reactivity (K'=2-10"%Imol™'s™! toward tetracyanoethylene (TCE) in
benzene at 20°), whereas the bicyclobutane bridged diene 10 is an extremely
reactive diene. The non-substituted analog 4 was found to yield the expected adduct
with TCE in benzene (67°, 24 h, see exper. part) in 90% yield. Kinetic measure-
ments gave a second order rate constant kL. .=(3.110.34)- 10~ Imol ' s7! at
39.5° (average of 3 independent runs under pseudo-first order conditions, 40-150
fold excess of 4). Thus, the diene 4 is only ca. 60 times less reactive than 5 toward
TCE in toluene at 40° [27]. A second order rate constant kL .. .=(6.2+0.11)- 1073
Imol™!' s71 was measured for the cycloaddition of 4 to TCE at 39.4°. After extra-
polation t0 20° (kfkpzene=1.7 - 1073 Imol~! s™!, assuming for 9 45+ = —27 calmol™!
K~ [27] as an upper limit, one estimates 4 to be ca. 850 times more reactive
than the syn-tetramethylated derivative 9 toward TCE. It appears, therefore, that
steric hindrance to the approach of the dienophile due to the syn-methyl groups
at C(5,6) in 9 might be a part of the Diels-Alder reactivity difference between the
dienes 9 and 10. Nevertheless, we agree with Hogeveen et al. [26] that steric hin-
drance alone cannot explain the observed difference in reactivity of these dienes.

CH,
H
s I[ ’ CHy
~ y CH
P CH3 CH3 P CHa 3
9 10

The lower Diels-Alder reactivity of 4 compared with that of 5 might be attributed
to a larger distance between the methylidene groups in 4 than in 5 [28]. This
argument, probably, does not apply to the reactivities of 9 and 10. Another inter-
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pretation invoking the different ability of the puckered cyclobutane [17] and
cyclopentane [18] ring to hyperconjugate with the diene function in 4 and 5,
respectively, cannot be ruled out yet.

We are grateful 1o the Swiss Science Foundation (FN 2.891-0.77), to the Fonds Herbette (Lausanne)
and to the Commission Fédérale des bourses pour étudiants étrangers (Zirrich) for generous®¥upport.

Experimental Part

General Remarks. Melting points (m.p.) and boiling points (b.p., not corrected), Torroli apparatus;
IR. spectra (¥ [cm™1]), Beckman IR-20A spectrometer; UV. spectra, Pye Unicam SP 1800 instrument
(Amax[mm](e), sh.=shoulder; Mass spectra (MS.) in electron ionization mode, CEC 21-490 Beli-Howel]
and Hewlett-Packard HP 5980A spectrometers (m/z[amu](% base peak)); 'H-NMR. spectra, Bruker
WP 80 CW (éppm, apparent coupling constant J[Hz], number of protons, tentative attribution);
s=singlet, d=doublet, r=triplet, m=multiplet, br.=broad, drys=0.0 ppm; 3C-NMR. spectra,
Bruker WP 60 spectrometer (15.08 MHz, spectrum width: 3750 Hz, 4096 points, FT Mode): dppm,
multiplicity, /¢ p. Elementary analysis were performed by the microanalytical laboratory of the
University of Geneva (Dr. K. Eder). Analytical gas chromatography, Hewlett-Packard 5710A;
preparative gas chromatography, Carlo Erba Fractovap 2400 V chromatograph.

Photoreactors. For 1=253.7 nm: Tauschlampe Hanau TNN 15/32 or Grintzel (Karlsruhe)
Reaktor 400, low pressure Hg lamp (quartz vessel); for 1> 300 nm, Philips HPK 125 W, pyrex vessels.
Stirring was made magnetically or by bubbling dry He or N, through the solutions. Sensitisers:
acetophenone, xanthone, (Fluka, puriss p.a); quenchers: azulene, cis-1,3-pentadiene, 9,10-benzo-
phenanthrene (Fluka, puriss p.a.).

2, 3-Dimethylidene-bicyclo [2.1.1]hexane (4). A pentane (450 ml) solution of the keto-diene 3 [9]
was degassed at 20° with dry N; for 30 min. After cooling to —30°, the stirred solution was irradiated
(253.7 nm, Hanau TNN 15/32) in a quartz vessel for 24 h. The slightly yellow solution contained
ca. 28% of 3, 26% of 4 and 46% of polymers (partially precipitated at —30°). The solution was
concentrated by distillation. The residue was combined with 4 other residues obtained under the
same conditions. Distillation afforded 490-500 mg of the crude diene 4 (36% based on reacted 3),
b.p. 130°/720 Torr, and 675 mg unreacted 3 (28%), b.p. 80°/2 Torr. The diene was purified by
preparative gas chromatography (FFAP 10%, Alltech Associates or SE30 10% on WAW Chromosorb,
60/80 mesh). - UV. (isooctane): 247 (sh.), 238.5 (8100), 231 (sh.), 222 (sh.). - IR. (CDCl3): 3090,
3000, 2960, 2890, 1670, 1430, 1210, 1150, 865, 815. - TH-NMR. (CDCl3): 5.20 (s, 2 H); 4.95 (s, 2 H);
295 (4 2H, YJH,4,HG.6-9m= 00, VH4,HE, 6ann= 2.5, H(LA); 202 (m, 2H, U, 6ym), 15, 6-ant0)
235, Y, 6sym, HE,5-any =20, JHE 6aniy 01,42 2.5, H(5,6-antd)); 133 (dxd, 2H, YUy em,
H(5,6-am‘i);3~5a 4]].[(5‘6_5),,,),1.1(6’5_,",”');2.0, H(5,6-syn)). - 13C.NMR. (CDCL): 151.6 (s), 97.4 (t, 158),
48.2 (d, 143), 43.8 (1, 144). - MS. (70 eV): 107 (5), 106 (60), 91 (100), 78 (45).

CgH g (106.17)  Calc. C90.51 H9.49% Found C90.71 H9.63%

Tetracyanoethylene adduct of 4. The diene 4 (57 mg, 0.53 mmol) and freshly sublimed TCE
(54.6 mg, 0.47 mmol) in anhydrous benzene (3 ml) were heated to 67° for 24 h under stirring. The
adduct precipitated at 10°. Yield: 90 mg (90%), colourless crystals, m.p. 220° (dec.). - UV. (CH;CN):
227.5 (3490). - IR. (KBr): 2990, 2960, 2880, 2250, 1660, 1430, 1220. - TH-NMR. (CD;COCD;): 3.75
(br. s, 4 H); 2.78 (m, 4 H); 2.50 (m, 2 H). - MS. (70 eV): 234 (0.6), 106 (16), 105 (15), 91 (100), 78 (27),
51 (19), 39 (25).

C4H;oN4(234.266) Calc. C71.78 H4.30 N23.92% Found C71.92 H422 N 24.02%

Kinetic measurements of the tetracyanoethylene addition to 4 (cf. [27]). The disappearance of the
TCE/toluene and TCE/benzene (solvent) charge-transfer complex at 405 and 384 nm, respectively,
was recorded as a function of time.

Quantum Yields were determined in the vessels used for the preparative irradiations. Potassium
ferrioxalate [29] was used as actinometer [30].
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