122. The Photochemistry of 5, 6-Dimethylidene-2-norbornanone. Synthesis and *Diels-Alder* Reactivity of 2, 3-Dimethylidenebicyclo-[2.1.1]hexane¹)

by Luis Schwager and Pierre Vogel²)

Institut de chimie organique de l'Université, 2, rue de la Barre, CH-1005 Lausanne, Switzerland

(16.IV.80)

Summary

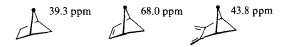
2,3-Dimethylidenebicyclo [2.1.1]hexane (4) was isolated from direct irradiation (253.7 nm) of 5,6-dimethylidene-2-norbornanone (3). Quenching experiments at 253.7 nm, as well as direct and sensitized irradiations at > 300 nm suggested that a high vibrationally excited S_1 - or a S_2 -state is required for the photodecarbonylation of 3 in contrast with other β , γ -unsaturated ketones for which *a*-cleavage occurs with lower excitation-energy. The new diene 4 reacted toward tetracyano-ethylene $(k_{39,5^\circ}^{11} (\text{Imol}^{-1} \text{ s}^{-1}) = (3.1 \pm 0.34) \cdot 10^{-3}$ in toluene and $(6.2 \pm 0.11) \cdot 10^{-3}$ in benzene) only 60 times more slowly than 2,3-dimethylidenenorbornane (5) and *ca*. 850 times as fast as 2,3-dimethylidene-*syn*-1,4,5,6-tetramethylbicyclo[2.1.1]-hexane (9).

Introduction. – The photochemistry of β , γ -unsaturated carbonyl compounds has been studied widely [2-5]. Three types of reactions can be observed: (1) the carbonyl reactions (a-cleavage (Norrish I), γ -hydrogen transfer (Norrish II), reduction, ketene elimination, etc.), (2) the olefin reactions (cycloadditions, cyclizations, cis-trans isomerizations, reduction, etc.) and (3) the bichromophoric reactions (1,2- and 1,3-acyl shifts, intramolecular oxetane formation, etc.). The photoreactions of β , γ , δ , ε -unsaturated ketones in which the carbonyl function looks at the 'front' of the diene, as depicted in 1, have been illustrated abundantly [2] [6]. The photochemistry of bichromophoric systems [7] in which an homoconjugated carbonyl group looks at the 'back' of a diene, as depicted in 2, has received little attention³). The 5, 6-dimethylidene-2-norbornanone (3) [9] is one example of such a system. We report here an exploratory study on its photochemistry.

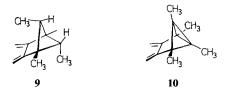
¹⁾ Interactions between non-conjugated chromophores, Part 12; Part 11, see [1].

²) Author, to whom correspondence should be addressed.

³) The photolysis ($\lambda > 300$ nm) of 2,3-dimethylidene-7-norbornanone yields CO and the 2,3-dimethylidene-1,4-cyclohexanediyl diradical [8].


Photolysis of 5,6-dimethylidene-2-norbornanone. – Contrary to 2, 3-dimethylidene-7-norbornanone [8] and to other β , γ - and β , γ , δ , ε -unsaturated ketones [2] [6], the keto-diene **3** is little photoreactive. Under direct irradiation at $\lambda > 300$ nm (pyrex, high-pressure Hg lamp, -50 to $+30^{\circ}$) only slow polymerization of **3** was observed (quantum yield < 0.02) in pentane, acetone or methanol. Addition of triplet sensitizers such as acetophenone or xanthone [10] did not affect the outcome of the photolysis. Irradiation at 253.7 nm (low-pressure Hg lamp, quartz) in pentane, ether, methanol, toluene or acetone yielded the 2, 3-dimethylidenebicyclo-[2.1.1]hexane (4) and untractable polymers. The photo-decarbonylation $3 \rightarrow 4$ was not quenched with O_2 , *cis*-1,3-pentadiene, 9, 10-benzophenanthrene or azulene, thus suggesting a singlet reactive state S_2 - or a vibrationally excited S_1 -state.

Cyclohepta-3, 5-dienones are known to undergo a-cleavage under $\lambda_{irr} > 300$ nm, probably via a $S_1(n,\pi^*)$ -state [6]. In 3, the $S_1(n,\pi^*)$ - and $T_1(n,\pi^*)$ -states do not lead to any observable decarbonylation. The 2,3-dimethylidenenorbornane (5) cyclizes to give the cyclobutene 6 upon direct irradiation at 253.7 nm with a relatively low quantum yield [11]. The analogous cyclobutene 7 could not be detected upon irradiation of 3 under the above conditions. However, it can not be excluded that 7 is consumed by fast reopening into 3 (if true, this would imply that the homoconjugated carbonyl group in 7 activates the electrocyclic ring opening, cf. [11]) or by a Diels-Alder reaction with 3 or 4 to generate various adducts. We failed, however, to detect any dimer of 3 or adduct of 7+4 in the polymeric material that was formed competitively with 4 (λ_{irr} = 253.7 nm), neither in the polymer formed under direct or sensitized irradiations at $\lambda > 300$ nm. Also no products of an oxa-di- π -methane rearrangement which has to occur via 8 could be detected. Control experiments established that the diene 4 was also polymerized under direct irradiation at 253.7 nm with a quantum yield of 0.10 ± 0.03 , not very different from that of the photodecarbonylation $3 \rightarrow 4$ (0.30±0.08). A quantum yield of 0.75 ± 0.08 was measured for the disappearance of 3 at 253.7 nm.


The structure of 4 was deduced from its spectral data, combustion analysis and reactivity toward tetracyanoethylene (TCE). A typical UV. absorption spectrum was observed for the planar *s-cis*-butadiene moiety [12] with $\lambda_{max} = 238.5$ nm. This corresponds to a somewhat higher transition energy than for the diene 5 ($\lambda_{max} = 248$ nm [13]) and 2,3-dimethylidenebicyclo[2.2.2]octane ($\lambda_{max} = 252$ nm [14]). If the small differences observed are not due to *Franck-Condon* effects of the $V \leftarrow N$ transition, one could attribute them to changes in the 1,4-interactions between the two ethylenic chromophores [15]. The distance between the two olefinic CH₂-groups is expected to be larger in 4 than in 5 and 2,3-dimethylidene-bicyclo-

[2.2.2]octane [16]. Another possible interpretation would be to invoke the different abilities of puckered cyclobutane [17], cyclopentane [18] and cyclohexane [19] rings to hyperconjugate with the exocyclic diene in 4, 5 and 2, 3-dimethylidenebicyclo[2.2.2]octane, respectively.

The endocyclic double bond in 2-norbornene derivatives exerts in the ¹³C-NMR. spectrum a remarquable downfield shift effect of 10-17 ppm on the γ -carbon C(7) relative to the corresponding saturated analogs [12a] [20]. This so-called 'norbornene effect' is not observed in acylic, monocyclic hydrocarbons [21] and in the bicyclo[2.2.2]octane series [22]. A downfield shift effect of *ca*. 29 ppm is observed on the $\delta_{\rm C}$ of the γ -carbon atoms C(5,6) by introducing an endocyclic double bond in bicyclo[2.1.1]hexane [23]. In contrast, 2-methylidenenorbornane [24] and 2,3-dimethylidene-norbornane [12a] [25] display a $\delta_{\rm C}$ for C(7) very similar to that of norbornane. Similarly, we find that methylidene groups at C(2,3) of the bicyclo[2.1.1]hexane system don't affect significantly the $\delta_{\rm C}$ of C(5,6).

Diels-Alder reactivity of 2,3-dimethylidene-bicyclo [2.1.1]hexane. - Hogeveen et al. [26] have shown that the cyclobutane bridged diene 9 has a remarkably low Diels-Alder reactivity $(k^{II}=2 \cdot 10^{-6} \text{ lmol}^{-1} \text{ s}^{-1} \text{ toward tetracyanoethylene (TCE) in}$ benzene at 20°), whereas the bicyclobutane bridged diene 10 is an extremely reactive diene. The non-substituted analog 4 was found to yield the expected adduct with TCE in benzene (67°, 24 h, see exper. part) in 90% yield. Kinetic measurements gave a second order rate constant $k_{\text{toluene}}^{\hat{1}\hat{1}} = (3.1 \pm 0.34) \cdot 10^{-3} \,\text{lmol}^{-1} \,\text{s}^{-1}$ at 39.5° (average of 3 independent runs under pseudo-first order conditions, 40-150 fold excess of 4). Thus, the diene 4 is only ca. 60 times less reactive than 5 toward TCE in toluene at 40° [27]. A second order rate constant $k_{\text{benzene}}^{\text{II}} = (6.2 \pm 0.11) \cdot 10^{-3}$ lmol⁻¹ s⁻¹ was measured for the cycloaddition of 4 to TCE at 39.4°. After extra-polation to 20° ($k_{\text{benzene}}^{\text{II}} \simeq 1.7 \cdot 10^{-3} \text{ Imol}^{-1} \text{ s}^{-1}$, assuming for 9 $\Delta S^+ = -27$ calmol⁻¹ K^{-1} [27] as an upper limit, one estimates 4 to be ca. 850 times more reactive than the syn-tetramethylated derivative 9 toward TCE. It appears, therefore, that steric hindrance to the approach of the dienophile due to the syn-methyl groups at C(5,6) in 9 might be a part of the *Diels-Alder* reactivity difference between the dienes 9 and 10. Nevertheless, we agree with Hogeveen et al. [26] that steric hindrance alone cannot explain the observed difference in reactivity of these dienes.

The lower *Diels-Alder* reactivity of 4 compared with that of 5 might be attributed to a larger distance between the methylidene groups in 4 than in 5 [28]. This argument, probably, does not apply to the reactivities of 9 and 10. Another interpretation invoking the different ability of the puckered cyclobutane [17] and cyclopentane [18] ring to hyperconjugate with the diene function in 4 and 5, respectively, cannot be ruled out yet.

We are grateful to the Swiss Science Foundation (FN 2.891-0.77), to the Fonds Herbette (Lausanne) and to the Commission Fédérale des bourses pour étudiants étrangers (Zürich) for generous support.

Experimental Part

General Remarks. Melting points (m.p.) and boiling points (b.p., not corrected), Tottoli apparatus; IR. spectra (\tilde{v} [cm⁻¹]), Beckman IR-20A spectrometer; UV. spectra, Pye Unicam SP 1800 instrument (λ_{max} [nm](ε), sh.=shoulder; Mass spectra (MS.) in electron ionization mode, CEC 21-490 Bell-Howell and Hewlett-Packard HP 5980A spectrometers (m/z[amu](% base peak)); ¹H-NMR. spectra, Bruker WP 80 CW (δ ppm, apparent coupling constant J[Hz], number of protons, tentative attribution); s=singlet, d=doublet, t=triplet, m=multiplet, br.=broad, $\delta_{TMS}=0.0$ ppm; ¹³C-NMR. spectra, Bruker WP 60 spectrometer (15.08 MHz, spectrum width: 3750 Hz, 4096 points, FT Mode): δ ppm, multiplicity, ¹J_{C,H}. Elementary analysis were performed by the microanalytical laboratory of the University of Geneva (Dr. K. Eder). Analytical gas chromatography, Hewlett-Packard 5710A; preparative gas chromatography, Carlo Erba Fractovap 2400 V chromatograph.

Photoreactors. For $\lambda = 253.7$ nm: Tauschlampe Hanau TNN 15/32 or Gräntzel (Karlsruhe) Reaktor 400, low pressure Hg lamp (quartz vessel); for $\lambda > 300$ nm, Philips HPK 125 W, pyrex vessels. Stirring was made magnetically or by bubbling dry He or N₂ through the solutions. Sensitisers: acetophenone, xanthone, (Fluka, puriss p.a.); quenchers: azulene, cis-1,3-pentadiene, 9,10-benzophenanthrene (Fluka, puriss p.a.).

2,3-Dimethylidene-bicyclo [2.1.1]hexane (4). A pentane (450 ml) solution of the keto-diene 3 [9] was degassed at 20° with dry N₂ for 30 min. After cooling to -30° , the stirred solution was irradiated (253.7 nm, Hanau TNN 15/32) in a quartz vessel for 24 h. The slightly yellow solution contained ca. 28% of 3, 26% of 4 and 46% of polymers (partially precipitated at -30°). The solution was concentrated by distillation. The residue was combined with 4 other residues obtained under the same conditions. Distillation afforded 490-500 mg of the crude diene 4 (36% based on reacted 3), b.p. 130°/720 Torr, and 675 mg unreacted 3 (28%), b.p. 80°/2 Torr. The diene was purified by preparative gas chromatography (FFAP 10%, Alltech Associates or SE30 10% on WAW Chromosorb, 60/80 mesh). - UV. (isooctane): 247 (sh.), 238.5 (8100), 231 (sh.), 222 (sh.). - IR. (CDCl₃): 3090, 3000, 2960, 2890, 1670, 1430, 1210, 1150, 865, 815. - ¹H-NMR. (CDCl₃): 5.20 (s, 2 H); 4.95 (s, 2 H); 2.95 (t, 2 H, ³J_H(1,6,-suni) $\cong 2.0$, ³J_H(5,6-anti) $\cong 2.5$, H(1,4)); 2.02 (m, 2 H, ²J_H(5,6-syn),H(5,6-anti) $\cong 2.0$, $^{3}J_H(5,6-syn)$). - ^{13}C -NMR. (CDCl₃): 151.6 (s), 97.4 (t, 158), 48.2 (d, 143), 43.8 (t, 144). - MS. (70 eV): 107 (5), 106 (60), 91 (100), 78 (45).

C₈H₁₀ (106.17) Calc. C 90.51 H 9.49% Found C 90.71 H 9.63%

Tetracyanoethylene adduct of **4**. The diene **4** (57 mg, 0.53 mmol) and freshly sublimed TCE (54.6 mg, 0.47 mmol) in anhydrous benzene (3 ml) were heated to 67° for 24 h under stirring. The adduct precipitated at 10°. Yield: 90 mg (90%), colourless crystals, m.p. 220° (dec.). – UV. (CH₃CN): 227.5 (3490). – IR. (KBr): 2990, 2960, 2880, 2250, 1660, 1430, 1220. – ¹H-NMR. (CD₃COCD₃): 3.75 (br. s, 4 H); 2.78 (m, 4 H); 2.50 (m, 2 H). – MS. (70 eV): 234 (0.6), 106 (16), 105 (15), 91 (100), 78 (27), 51 (19), 39 (25).

C14H30N4 (234.266) Calc. C 71.78 H 4.30 N 23.92% Found C 71.92 H 4.22 N 24.02%

Kinetic measurements of the tetracyanoethylene addition to 4 (cf. [27]). The disappearance of the TCE/toluene and TCE/benzene (solvent) charge-transfer complex at 405 and 384 nm, respectively, was recorded as a function of time.

Quantum Yields were determined in the vessels used for the preparative irradiations. Potassium ferrioxalate [29] was used as actinometer [30].

REFERENCES

- [1] J.-M. Sonney & P. Vogel, Helv. 63, 1034 (1980).
- [2] K.N. Houk, Chem. Rev. 76, 1 (1976); W.G. Dauben, G. Lodder & J. Ipaktschi, Top. Curr. Chem. 54, 73 (1975); R.L. Coffin, W.W. Cox, R.G. Carlson & R.S. Givens, J. Amer. chem. Soc. 101, 3261 (1979); Abramson & B. Fuchs, Tetrahedron Letters 1980, 1165.
- [3] M. B. Rubio, M. Weiner & H.-D. Scharf, J. Amer. chem. Soc. 98, 5699 (1976).
- [4] S. D. Parker & N.A.J. Rogers, Tetrahedron Letters 1976, 4389.
- [5] M.A. Schexnayder & P.S. Engel, J. Amer. chem. Soc. 97, 4825 (1975).
- [6] D.I. Schuster & J. Ericksen, J. org. Chemistry 44, 4254 (1979).
- [7] H. Morrison, Acc. Chem. Res. 12, 383 (1979); R.G. Weiss & G.S. Hammond, J. Amer. chem. Soc. 100, 1172 (1978) and ref. therein.
- [8] W.R. Roth, M. Biermann, G. Erker, K. Jelich, W. Gerhartz & H. Görner, Chem. Ber. 113, 586 (1980).
- [9] A. Chollet, C. Mahaim, C. Foetisch, M. Hardy & P. Vogel, Helv. 60, 59 (1977).
- [10] a) S. Murov, 'Handbook of Photochemistry', Marcel Dekker, New York 1973; b) W.G. Herkstroeter, A.A. Lamola, G. Hammond, J. Amer. chem. Soc. 86, 4537 (1964).
- [11] D. H. Aue & R. N. Reynolds, J. Amer. chem. Soc. 95, 2027 (1973).
- [12] a) D. Quarroz, J.-M. Sonney, A. Chollet, A. Florey & P. Vogel, Org. magn. Res. 9, 611 (1977);
 b) P. V. Alston & R.M. Ottenbrite, J. org. Chemistry 41, 1635 (1976); D. N. Butler & R.A. Snow, Canad. J. Chem. 50, 795 (1972); A. Chollet, J.-P. Hagenbuch & P. Vogel, Helv. 62, 511 (1979).
- [13] W.J. Bailey & W.B. Lawson, J. Amer. chem. Soc. 77, 1606 (1955); W.J. Bailey & S.S. Miller, J. Org. Chemistry 28, 802 (1963); K. Alder & H. H. Mölls, Chem. Ber. 89, 1960 (1956).
- [14] P. Asmus & M. Klessinger, Tetrahedron 30, 2477 (1974).
- [15] M.J.S. Dewar & R.C. Dougherty, 'The PMO Theory of Organic Chemistry', Plenum Press, New York 1975.
- [16] H.-U. Pfeffer & M. Klessinger, Chem. Ber. 112, 890 (1979).
- [17] W. L. Jorgensen & W. T. Borden, J. Amer. chem. Soc. 95, 6649 (1973); R. Gleiter, P. Bischof, W. E. Volz & L.A. Paquette, ibid. 99, 8 (1977).
- [18] M. Hardy, P.-A. Carrupt & P. Vogel, Helv. 59, 1685 (1976); P. Vogel, Chimia 31, 53 (1977); A. Streitwieser, jr. & S. Alexandratos, J. Amer. chem. Soc. 100, 1979 (1978) and ref. therein.
- [19] R. Hoffmann, P.D. Mollère & E. Heilbronner, J. Amer. chem. Soc. 95, 4860 (1973).
- [20] E. Lippmaa, T. Pehk, J. Paasivirta, N. Belikova & A. Platé, Org. magn. Res. 2, 581 (1970); J. B. Grutzner, M. Jautelat, J. B. Dence, R. A. Smith & J. D. Roberts, J. Amer. chem. Soc. 92, 7107 (1970); R. W. Hoffmann & H. Kurz, Chem. Ber. 108, 119 (1975); L. D. Quin & L.B. Littlefield, J. org. Chemistry 43, 3508 (1978).
- [21] D.E. Dorman, M. Jautelat & J.D. Roberts, J. org. Chemistry 36, 2757 (1971); D.R. Paulson, F.Y.N. Tang, G.F. Moran, A.S. Murray, B.P. Pelka & E.M. Vasquez, ibid. 40, 184 (1975); P.A. Couperus, A. D. H. Clague & J.P. C. M. von Dongen, Org. magn. Res. 8, 426 (1976).
- [22] J.B. Stothers & C.T. Tan, Canad. J. Chemistry 54, 917 (1976); P.J. Garatt & R. Riguera, J. org. Chemistry 41, 465 (1976); U. Steiner, H.-J. Hansen, K. Bachmann & W. v. Philipsborn, Helv. 60, 643 (1977).
- [23] M. Christl & R. Herbert, Org. magn. Res. 12, 150 (1979).
- [24] S.H. Grover & J.B. Stothers, Canad. J. Chemistry 53, 589 (1975); N.H. Werstiuk, R. Taillefer, R.A. Bell & B.G. Sayer, ibid. 50, 2146 (1972).
- [25] H.-U. Pfeffer & M. Klessinger, Org. magn. Res. 9, 121 (1977).
- [26] H. Hogeveen, W. F.J. Huurdeman & D. M. Kok, J. Amer. chem. Soc. 100, 871 (1978).
- [27] O. Pilet, A. Chollet & P. Vogel, Helv. 62, 2341 (1979).
- [28] R. Sustmann, M. Böhm & J. Sauer, Chem. Ber. 112, 883 (1979); H.-D. Scharf, H. Plum, J. Fleischhauer & W. Schleker, ibid. 112, 862 (1979).
- [29] G.D. Cooper & B.A. De Graff, J. phys. Chemistry 75, 2897 (1971).
- [30] J. Calvert & J. Pitts, 'Photochemistry', E.J. Wiley, New York 1966, p. 780.